Complex Extended Kalman Filters for Training Recurrent Neural Network Channel Equalizers

نویسنده

  • Vedran Kordić
چکیده

The Kalman filter was named after Rudolph E. Kalman published in 1960 his famous paper (Kalman, 1960) describing a recursive solution to the discrete-data linear filtering problem. There are several tutorial papers and books dealing with the subject for a great variety of applications in many areas from engineering to finance (Grewal & Andrews, 2001; Sorenson, 1970; Haykin, 2001; Bar-Shalom & Li, 1993). All applications involve, in some way, stochastic estimation from noisy sensor measurements. This book chapter deals with applications of Complex Valued Extended Kalman Filters for training Recurrent Neural Networks particularly RTRL (Real Time Recurrent Learning) neural networks. Gradientbased learning techniques are usually used in back-propagation and Real-Time Recurrent Learning algorithms for training feed forward Neural Networks and Recurrent Neural Network Equalizers. Known disadvantages of gradient-based methods are slow convergence rates and long training symbols necessary for suitable performance of equalizers. In order to overcome such problems Kalman filter trained neural networks has been considered in the literature. The applications are related to mobile channel equalizers using realistic channel responses based on WSSUS (Wide-Sense Stationary Uncorrelated Scattering) models. The chapter begins with a detailed description showing the application of Extended Kalman Filters to RTRL (Real Time Recurrent Learning) neural networks. The main equations are derived in a state space framework in connection to RTRL training. Then applications are envisioned for mobile channel equalizers where WSSUS models are adequate for handling equalization in presence of time-varying channels. This chapter proposes a fully recurrent neural network trained by an extended Kalman filtering including covariance matrices adjusted for better filter tuning in training the recurrent neural network equalizer. Several structures for the Extended Kalman Filter trained equalizer are described in detail, and simulation results are shown comparing the proposed equalizers with traditional equalizers and other recurrent neural networks structures. Conclusions are drawn in the end of the chapter and future work is also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Dynamical Systems by Recurrent Neural Networks

Recurrent neural networks in general achieve better results in prediction of time series then feedforward networks. Echo state neural networks seem to be one alternative to them. I have shown on the task of text correction, that they achieve slightly better results compared to already known method based on Markov model. The major part of this work is focused on alternatives to recurrent neural ...

متن کامل

Recurrent Neural Network Training with the Extended Kalman Filter

Recurrent neural networks, in contrast to the classical feedforward neural networks, better handle inputs that have spacetime structure, e.g. symbolic time series. Since the classic gradient methods for recurrent neural network training on longer input sequences converge very poorly and slowly, the alternative approaches are needed. We describe the principles of the training method with the Ext...

متن کامل

Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets

The long short-term memory (LSTM) network trained by gradient descent solves difficult problems which traditional recurrent neural networks in general cannot. We have recently observed that the decoupled extended Kalman filter training algorithm allows for even better performance, reducing significantly the number of training steps when compared to the original gradient descent training algorit...

متن کامل

An algorithmic approach to adaptive state filtering using recurrent neural networks

Practical algorithms are presented for adaptive state filtering in nonlinear dynamic systems when the state equations are unknown. The state equations are constructively approximated using neural networks. The algorithms presented are based on the two-step prediction-update approach of the Kalman filter. The proposed algorithms make minimal assumptions regarding the underlying nonlinear dynamic...

متن کامل

Improving Long-Term Online Prediction with Decoupled Extended Kalman Filters

Long Short-Term Memory (LSTM) recurrent neural networks (RNNs) outperform traditional RNNs when dealing with sequences involving not only short-term but also long-term dependencies. The decoupled extended Kalman filter learning algorithm (DEKF) works well in online environments and reduces significantly the number of training steps when compared to the standard gradient-descent algorithms. Prev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012